Evidence That Intracellular Stages of Leishmania major Utilize Amino Sugars as a Major Carbon Source
نویسندگان
چکیده
Intracellular parasites, such as Leishmania spp, must acquire suitable carbon sources from the host cell in order to replicate. Here we present evidence that intracellular amastigote stages of Leishmania exploit amino sugars in the phagolysosome of mammalian macrophages as a source of carbon and energy. L. major parasites are capable of using N-acetylglucosamine and glucosamine as primarily carbon sources and contain key enzymes required for conversion of these sugars to fructose-6-phosphate. The last step in this pathway is catalyzed by glucosamine-6-phosphate deaminase (GND), which was targeted to glycosomes via a canonical C-terminal targeting signal when expressed as a GFP fusion protein. Mutant parasites lacking GND were unable to grow in medium containing amino sugars as sole carbohydrate source and rapidly lost viability, concomitant with the hyper-accumulation of hexosamine-phosphates. Expression of native GND, but not a cytosolic form of GND, in Δgnd parasites restored hexosamine-dependent growth, indicating that toxicity is due to depletion of glycosomal pools of ATP. Non-lethal increases in hexosamine phosphate levels in both Δgnd and wild type parasites was associated with a defect in promastigote metacyclogenesis, suggesting that hexosamine phosphate levels may influence parasite differentiation. Promastigote and amastigote stages of the Δgnd mutant were unable to replicate within macrophages and were either completely cleared or exhibited reduced lesion development in highly susceptible Balb/c mice. Our results suggest that hexosamines are a major class of sugars in the macrophage phagolysosome and that catabolism of scavenged amino sugars is required to sustain essential metabolic pathways and prevent hexosamine toxicity.
منابع مشابه
Intracellular Survival of Leishmania major Depends on Uptake and Degradation of Extracellular Matrix Glycosaminoglycans by Macrophages
Leishmania parasites replicate within the phagolysosome compartment of mammalian macrophages. Although Leishmania depend on sugars as a major carbon source during infections, the nutrient composition of the phagolysosome remains poorly described. To determine the origin of the sugar carbon source in macrophage phagolysosomes, we have generated a N-acetylglucosamine acetyltransferase (GNAT) defi...
متن کاملVirulence of Leishmania major in macrophages and mice requires the gluconeogenic enzyme fructose-1,6-bisphosphatase.
Leishmania are protozoan parasites that replicate within mature phagolysosomes of mammalian macrophages. To define the biochemical composition of the phagosome and carbon source requirements of intracellular stages of L. major, we investigated the role and requirement for the gluconeogenic enzyme fructose-1,6-bisphosphatase (FBP). L. major FBP was constitutively expressed in both extracellular ...
متن کاملCLONING AND EXPRESSION OF LEISHMANOLYSIN GENE FROM LEISHMANIA MAJOR IN PRIMATE CELL LINES
Leishmanolysin is a worldwide disease that is caused by different species of the genus Leishmania. Leishmanolysin, One of the genes expressed by Leishmania, appears to be an ideal candidate for genetic vaccination. In this study, a full length sequence, which encodes Leishmanolysin functionally critical regions (amino acids 100-579), was cloned from a Leishmania strain endemic to Iran. Analysis...
متن کاملEffect of Staphylococcus Aureus and Streptococcus beta-haemolytic Supernatants’ on Leishmania Major Promastigotes Viability: An In Vitro Study
Background and Aims: Leishmaniasis is an intracellular protozoan- parasitic disease, the common vector of transmission. Both zoonotic and anthroponotic cutaneous leishmaniasis (CL) are endemic in different foci. With regard to the cutaneous form, 1.0-1.5 million cases were reported annually with 90% of the cases. Although antimony-containing compounds that are the main drugs used to treat Leish...
متن کاملPartial Purification of a Potent Immunosuppressive Factor Excreted from Leishmania major Promastigote and Amastigote
Recent scientific evidence indicates that distinct patterns of susceptibility in BALB/c mice to Leishmania major infection are attributable to the differential expansion of distinct CD4+ T-cell subsets and their cytokines production. Production of the Th1 cytokine IFN-g is associated with resistance, whereas production of the Th2 cytokines IL-4 and IL-10 are associated with extreme susceptibili...
متن کامل